Things to remember in the last hour before the exam: Level 2 Genetic Variation

(This is not a revision sheet - you've done that by now - it's a list of things you might want to remind yourself about ...)

- 1. Cell division
 - Mitosis for growth / repair 2 identical diploid (2n) daughter cells also for asexual reproduction
 - Meiosis -for gamete production (sexual repro.) 4 haploid (n) cells. NOT identical. When fertilisation occurs
 makes new individual with full # of genes maintaining the chromosomal number from generation to
 generation while promoting genetic diversity and variability within the population.
- 2. Sources of variation

Meiosis - formation of gametes - mixes existing alleles into new combinations. During meiosis there is:

- Crossing over-recombination pieces of (inward facing) homologous chromosomes are exchanged
 - \circ Recombinants (mix of both parents)
 - $\circ~$ Non-recombinants (unaltered by crossing over)

Genes on same chromosome are linked - don't assort independently - but can be shuffled by crossing over.

- Independent assortment each homologous pair of chromosomes lines up at the equator maternal or paternal -independently of the other homologous pairs
- Segregation random which way sister chromatids line up and separate to form gametes

<u>Mutation</u> - permanent change in the nucleotide sequence in a gene or a chromosome. Mutation is the ultimate source of variation - creating NEW alleles. Change in DNA base sequence → change in amino acid sequence

- ightarrow different protein ightarrow potentially different phenotype. Mutations may be
- Beneficial improves survivability / reproductive fitness
- Harmful decreases survivability / reproductive fitness
- Neutral no apparent effect

Mutations passed on to offspring (heritable) must occur in the gametes \rightarrow become part of offspring's genetic makeup \rightarrow transferred to next (& *possibly subsequent*) generations. Mutations in somatic (body) cells affect just that organism - can't be passed on.

- 3. Changes to gene pool (complete set of unique alleles in a population) changes in allele frequencies due to
 - mutation (see above)
 - natural selection survival and reproductive success in individuals whose characteristics are best suited to the environment - at a given time.
 - o stabilising favours middle range of adaptive phenotype
 - $\circ~$ directional favours one extreme of adaptive phenotype
 - o disruptive favours both extremes of adaptive phenotype
 - migration (transfer of genes from one population to another)
 - \circ new alleles being brought in (immigration) or
 - \circ alleles being lost from the population (emigration).

- Genetic drift change in the relative frequency in which an allele occurs in a population due to random events - not related to the fitness of the allele to that environment.
- Founder effect very small group leaves much larger group → separate populations emigrants have
 only small sample of gene pool gene freq. is often very different between the 2 populations →
 decreased genetic diversity in new pop. The small pop will be susceptible to genetic drift.
- Genetic bottleneck population #s become so low (e.g. many individuals have died) → survivors carry just a proportion of original genes. Inbreeding inevitable & pop more prone to genetic drift.
 Migration and genetic drift have a big effect in a SMALL population relatively small changes in allele numbers can have a bigger impact on the ratio of those alleles in the population
 Barriers to gene flow can be geographic potentially leading to isolation → speciation.
- 4. Monohybrid and dihybrid inheritance patterns
 - Gene fundamental unit of inheritance codes for a protein
 - Alleles alternative forms of a gene e.g brown eyes / blue eyes
 - Genotype combination of alleles / genetic make up
 - Phenotype characteristic coded for by gene -anatomical, physiological, biochemical
 - Dominant will show in phenotype of present e.g. RR (homozygous dominant) and Rr (heterozygous)
 - Recessive only expressed if homozygous recessive.g. rr
 - Incomplete dominance one allele for a specific trait is not completely dominant over the other allele → an intermediate phenotype results from the partial influence of both alleles e.g. snapdragon red + white flowers with pink coloured offspring
 - Codominance both alleles in a heterozygous organism contribute to phenotype equally and independently expressed e.g. roan cow has mix of red and white hairs (not 100% "pink" hairs).
 - Sex-linked genes on X chromosome that are absent on (smaller) Y chromosome e.g. colour blindness , haemophilia. (Other 22 pairs of chromosomes are called autosomes).
 - Monohybrid crosses involve one pair of contrasting traits e.g black / brown fur. Offspring of cross = F_1 generation, "grandchildren" = F_2 . Offspring ratios become closer to theoretical Punnet square ratios when large # of offspring is produced. Bb x Bb give 1:2:1 genotype ratio. 3:1 phenotype ratio.
 - Lethal allele allele causing death of homozygous individual (allele can be dominant or recessive).
 Characterised by 2:1 phenotype ratio, rather than 3:1. No/stumpy tail in Manx cat is result of a dominant mutation, mutant allele M. MM die prior to birth /die young. MM Mm Mm mm 2 no/stumpy tail : 1 normal tail
 - Calculate expected proportions of genotype and phenotype express as ratio, fraction, % or decimal.
 - To decide if an individual is homozygous or heterozygous do a test cross; breed with a homozygous recessive individual.
 - Dihybrid crosses 2 pairs of contrasting traits considered simultaneously. As Bb can produce 4 types of egg / 4 kinds of sperm → 16 different ways they can combine. Some give the same result so there are 9 genotypes. Hint: Write them in order AB Ab aB ab in punnet square to clearly show proportions of the 4 phenotypes 9:3:3:1 phenotypic ratio.
 - AABB or AABb or AaBB or AaBb will all have same phenotype.
 - Dihybrid test cross: cross with aa bb. May need to test cross offspring multiple times to be sure.
 - True / pure breeding homozygous individuals: when mated with own type for several generations. offspring resemble original parents.
 - Multiple alleles e.g. blood types. I^A I^B and I⁰. Group A is I^AI^A or I^AI⁰
 Don't forget to throw this away DO NOT take it into the exam by mistake We don't want you disqualified!